Thursday, February 26, 2015

CORDIS reports on biofilm Algadisk bioreactor


Preliminary laboratory scale studies have shown consistent biomass production and weekly a thick microalgal biofilm could be harvested. A new and innovative harvesting device has been developed for ALGADISK able to directly harvest the dense biofilm with a dry matter of 150 gram per litre.


The project received founding through the European Union’s FP7 under grant agreement number 286887.


Earlier, in 2013:

Current commercial alga technologies use plantonic algae in water solution in Vertical Bioreactors (VB) or algae farms with large ponds. However, there are several disadvantages. The processes need a lot of water during production, CO2 is released through bubbling in the liquid phase and harvesting is difficult, time consuming and inefficient. In addition, the operation is difficult to scale up and leaves a large foot print.

ALGADISK's proposed process is based on biofilm technology using a Rotating Disk reactor system similar to the state of art rotating reactors used elsewhere in the biological industry. In this system, algae can be grown on indifferent biocompatible surfaces and thus CO2 would be captured either from the gas phase directly or from the liquid phase after bubbling. This method dramatically increases the efficiency and decreases the amount of water necessary for the process. Automatic and continuous harvesting could also be designed and implemented. Scale-up is easy and the foot print would be much smaller than used currently. The ALDADISK project aims to develop a small automatic, biofilm reactor, with low operation and installation costs, which is capable of capturing a considerable amount of CO2, The intended result would be organic products with a sufficiently high yield.

Furthermore, those SMEs that are participating in the project consortium are particularly interested in a system that remains profitable with small-scale installations and occupies a minimal amount of space. In addition to the production technology, there is also a need for an organized and integrated knowledge base. Many of the participants in the project are interested in algae production, but lack the tools necessary to calculate economic feasibility and to determine which system best suits their needs. One aim of the project, therefore, is to bridge the knowledge gap between research activities and end-user needs.

Design software will be provided which, based on user input, will suggest installation parameters, perform cost/benefit analysis to calculate economic feasibility, and make predictions concerning the environmental sustainability of the system. The proposed system will be specifically crafted to meet the needs of SMEs.

Laboratory tests, a pilot scale system, and mechanical and electronic designs are currently being carried out. These will be followed by a prototype reactor system which will be installed at one end-user facility. The intention is for the first ALGADISK reactor to be operated and tested in the summer of 2014.

The ALGADISK project is funded by the European Commission through the Seventh Framework Programme (FP7) within the funding scheme "Research for the Benefit of SME Associations" managed by REA Research Executive Agency. Eleven participants from eight countries (3 associations, 4 small and medium enterprises and 4 research institutions) will be working on the project over the next 36 months.


Post a Comment

<< Home